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Abstract—Ciguatoxin C-CTX-1 was isolated as a principal causative toxin of ciguatera seafood poisoning in the Caribbean Sea, and
is structurally classified as a ladder-shaped polycyclic ether. In this Letter, we report the synthesis of the tricyclic LMN-ring system
of C-CTX-1. Sml,-mediated reductive cyclization efficiently constructed the seven-membered M-ring with the axially oriented

1,3-dimethyl structure.
© 2007 Elsevier Ltd. All rights reserved.

Ciguatoxins, the principal causative toxins of ciguatera
seafood poisoning, are large ladder-like polycyclic
ethers.! To date, more than 20 ciguatoxin congeners
have been structurally identified.> Ciguatera causes
diverse and often long-lasting human health problems.
The severity, number and duration of ciguatera symp-
toms reflect a combined influence of dose, toxin profile
and individual susceptibility. In the Pacific Ocean, neu-
rological symptoms predominate, while in the Carib-
bean Sea, gastrointestinal symptoms are a dominant
feature of the disease.!® These quantitative differences
in symptoms could originate from the structural differ-
ences between Pacific and Caribbean ciguatoxins; in
contrast to 13 ether rings in the Pacific ciguatoxins,
Caribbean ciguatoxin C-CTX-1 (1, Fig. 1)* possesses
14 ether rings with distinct functional group patterns.

The very limited supply of ciguatoxins from natural
sources has prevented structure-symptom relationship
studies as well as development of therapeutic methods
for ciguatera. To address these issues, we recently syn-
thesized three Pacific ciguatoxins*® and developed
immunochemical methods for their detection.® Here,
we report the synthesis of LMN-ring moiety 4 of Carib-
bean ciguatoxin 1, which could be useful both for pre-
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Figure 1. Structures of the Caribbean ciguatoxin C-CTX-1 and
retrosynthesis of the right wing fragment of C-CTX-1.

paring anti-ciguatoxin antibodies and as a fragment
for its total synthesis.

Tricyclic fragment 4 (Fig. 1) was designed to be coupled
with HI-ring 3 to generate the right wing fragment 2,
which would be further assembled with the previously
reported ABCDE-ring fragment’ to deliver C-CTX-1
1. The convergent strategies necessary for these two cou-
plings were recently developed and applied to the total
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synthesis of the Pacific ciguatoxins.*® LMN-ring por-
tion 4 is the most heavily substituted sub-structure of
1; three of the four angular methyl groups are present
in this region. In particular, the M-ring posed a signifi-
cant synthetic challenge, because the two sterically
demanding methyl groups are placed in a 1,3-diaxial
relationship on the strained seven-membered ring.’
Although a number of strategies for the construction
of oxepane rings have been developed,!® no general
method was available for building the bis-trisubstituted
alkyl ether in the oxepane format. Therefore, we
planned a flexible synthetic strategy so that various
methodologies could be applied to the M-ring cycliza-
tion, starting from the common L-ring fragment 5. After
synthesis of the LM-ring system, the N-ring would be
constructed to furnish 4.

First, the two side chains of the six-membered ring 6''
were modified (Scheme 1). MOM-protection of alcohol
6, ozonolysis of the terminal olefin of 7, and subsequent
allylation with a Grignard reagent in THF'? gave
secondary alcohol 8 as the major stereoisomer (2.1:1).
Introduction of the 2-naphthylmethyl (NAP)'® group
to alcohol 8, followed by removal of the p-methoxyphe-
nyl (MP) acetal from 9, produced 1,3-diol 10. Chemose-
lective oxidation of the primary alcohol of diol 10 was
realized by using the modified Corey—Kim oxidation,'*
leading to aldehyde 11. Then, compound 11 was ex-
posed to a Wittig reagent to give the o,p-unsaturated
olefin 12, reduction of which with KBH(s-Bu); resulted
in the saturated 1,5-diol 5.13

Our first strategy for synthesizing the seven-membered
M-ring was based on the acid-catalyzed, 7-endo selec-
tive, cyclization of hydroxy epoxides, developed by
Nicolaou (Scheme 2).' Before the cyclization, the
appropriate functional groups were introduced into 5.
Swern oxidation of diol 5 generated the dicarbonyl com-
pound, the aldehyde group of which was reacted with a
Wittig reagent to produce o-methyl-o,B-unsaturated
ester 13. Axial-attack of Me3Al on the C48-ketone of
13 led to tertiary alcohol 14 as the sole isomer.!” After

b) O3; Me,S R%Q

44 MeO H a4z Mec> H
BSOS aB OBt
1072 2 8 8
R'O a a 0o~ "MP MOMO a a 0o~ "MP

.rl -
aymomel [ _ &R =M

CR2 -
R = MOM d) NAPBr,:B'R =H

9: R2 = NAP
e) PPTS r

NAPO NAPO

A/U\L h)KBH(sBu)3 A/m
MOMO OH ~OH MOMO

f) NCS, PhSMe ’:‘0 X=H,OH

1:X=0
) PhgP
9PN 0, melw 12: X = CHCO,Me

Scheme 1. Reagents and conditions: (a) MOMCI, i-Pr,NEt, 1,2-
dichloroethane, reflux, 99%; (b) Os, pyridine/CH,Cl,/MeOH (1:3:4),
—78 °C, then Me,S; (¢) CH,=CHCH,MgBr, THF, —100 °C, 59% (8),
28% (C44-epimer) (two steps); (d) NAPBr, TBAI, NaH, THF/DMF
(3:1), rt; (e) PPTS, MeOH, 94% (two steps); (f) NCS, PhSMe, CH,Cl,,
—20 °C, then i-Pr,NEt, —78 °C; (g) Ph;P—=CHCO,Me, THF, rt, 62%
(E/Z = 1:2, two steps); (h) KBH(s-Bu)s, --BuOH, THF, —100 to 0 °C,
85%.
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Scheme 2. Reagents and conditions: (a) (COCl),, DMSO, CH,Cl,,
—78 °C, then Et3N; (b) PhyP=C(Me)CO,Me, toluene, rt, 56% (two
steps); (¢) MesAl, CH,Cl,, —78°C to —15°C, 81%; (d) TMSCI,
imidazole, CH,Cl,, rt; (¢) DIBAL-H, CH,Cl,, —78 °C, 89% (two
steps); (f) Ti(Oi-Pr)y, (+)-diethyl L-tartrate, ~-BuOOH, 4A MS,
CHzclz, 899 0, (g) SO3 Py, E[3N DMSO CH2C12, rt; (h)
Ph;P=CHCO,Me, toluene, rt; (i) TBAF, THF, 72% (three steps); (j)
CSA, CH,Cl,, 0°C to rt, 0% (22), 40% (23); (k) CSA, CH,Cl,, 0 °C,
79%.

conversion of alcohol 14 to its TMS ether, the ester of
15 was reduced with DIBAL-H to generate 16. Sharpless
asymmetric epoxidation'® of allylic alcohol 16 led stereo-
selectively to epoxide 17. Following the Nicolaou
method, a n-bond was placed adjacent to the epoxide
unit in order to facilitate the 7-endo cyclization through
cleavage of the C53-0O bond. Thus, SO5-pyridine oxida-
tion of 17 and subsequent Wittig olefination of 18 pro-
duced 19, the TMS group of which was removed to
give hydroxy epoxide 20. However, to our disappoint-
ment, a variety of acid catalysts failed to transform 20
into oxepane 22. Instead, diene 23 was generated under
these conditions in 40% yield via C62-proton elimina-
tion/epoxide opening (see 21). Interestingly, the lower
homologue 24 was successfully converted to tetrahydro-
pyran 25 in 79% yield under the same conditions.!?
These two contrasting results reflect the significant
difference in cyclization efficiency between the six- and
seven-membered rings. A more powerful method was
clearly required to construct the dimethyl-substituted
M-ring.

As shown in Scheme 3, we next adopted Nakata’s SmlI,-
induced reductive intramolecular cyclization?%?! to con-
struct the M-ring. Cyclization substrate 31 was prepared
in seven steps from the common intermediate 5. The pri-
mary alcohol of diol 5 was selectively masked with a TBS
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Scheme 3. Reagents and conditions: (a) TBSCI, imidazole, CH,Cl,,
0°C, 99%; (b) (COCl),, DMSO, CH,Cl,, —78 °C, then Et3N, 89%; (c)
Me;Al, CH,Cl,, —90 °C to —30 °C, 87%; (d) MeC=CCO,Me, Me;P,
CH,Cl,, rt to reflux, 0%; (e) Ac;O, DMAP, CH,Cl,, rt, 90%; (f)
Me;P=CHCO,Me, toluene, 200 °C, 33% (57% of 28 was recovered);
(g) TBAF, THF, rt; (h) (COCIl),, DMSO, CH,Cl,, —78°C, then Et3;N,
99% (two steps); (1) Sml,, THF (1 mM), rt, 24 h, 42% (330:33p = 1:3,
based on 85% conversion), 44% (30, based on 85% conversion).

group to generate 26. Swern oxidation of the remaining
secondary alcohol of 26, followed by stereoselective
methylation, resulted in 27. However, PMes-induced
hetero Michael-addition?? of tertiary alcohol 27 to the
corresponding tetrolic acid methyl ester did not proceed,
presumably due to the bulky nature of the nucleophile.
We thus developed a new two-step protocol to produce
B-alkoxy crotonate 29. Acetylation of 27 led to ester
28, olefination of which was realized using highly
reactive methyl (trimethylphosphoranylidene)acetate
to afford enol ether 29.2* Noteworthily, the tributyl-
and triphenylphosphoranylidene derivatives®* did not in-
duce this ‘non-classical’ Wittig olefination of ester 28.

Removal of the TBS group from 29, followed by Swern
oxidation, gave aldehyde 31. Gratifyingly, Sml,-pro-
moted 7-exo radical cyclization in THF under dilute
conditions (1 mM) transformed 31 into the seven-mem-
bered M-ring (42% yield, 33a:33p = 1:3). Cyclization
products 33a and 33p were determined to be C52-epi-
mers with the desired C51-stereochemistry. Radical
intermediates 32a and 32f, conformationally fixed by
chelation of Sm(III), most likely lead to 33a and 33,
respectively, through C-C bond formation and subse-
quent lactonization.

Construction of the N-ring to the major isomer 33p gave
rise to the desired LM N-ring fragment 4 (Scheme 4). DI-
BAL-H-reduction of lactone 33p to the corresponding
lactol 34, followed by Wittig olefination,> afforded
o-methoxy-o,B-unsaturated ester 35. Alcohol 35 was
oxidized under Swern conditions to generate ketone
36, which was treated with DIBAL-H, leading to diol
37 as the major isomer. In this reaction, the B-selective

33B: X =0
34:X=H, OH

CO,Me
Tv b) P 2
OMe

Scheme 4. Reagents and conditions: (a) DIBAL-H, CH,Cl,, —90 °C;
(b) Ph3P=C(OMe)CO,Me, toluene, 110°C, 52% (two steps); (c)
(COCl),, DMSO, CH,Cl,, —78 °C, then Et3N, 89%; (d) DIBAL-H,
CH,Cl,, —100 °C, 61% (37), 11% (C52-epimer); (e) Sc(OTf)s, acetone,
83%.

attack of hydride on the ketone of 36 set the desired
C52-stereochemistry. Lastly, construction of the aceto-
nide-protected N-ring from methyl enol ether 37 was
achieved by direct acetalization in acetone in the pres-
ence of Sc(OTf)3.2° Under these conditions, the thermo-
dynamically more stable C56-spiroacetal 4 was formed
as the sole stereoisomer.?’

In summary, the synthesis of the LMN-ring fragment of
the Caribbean ciguatoxin C-CTX-1 was established in a
stereoselective manner. Key reactions of the synthesis
include (i) an acetylation/Wittig reaction sequence to
introduce the branched enol ether structure (27—29);
(i1) the SmI,-mediated reductive cyclization to construct
the seven-membered M-ring with the axially oriented
1,3-dimethyl structure (31—33); (iii) a Sc(OTf)s-pro-
moted acetalization to build the acetonide-protected
N-ring (37—4). Synthesis of the right wing fragment
of C-CTX-1 from 4 is currently underway, and will be
reported in due course.
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Physical data for 4: [oc]zD(’ —47.31 (¢ 1.00, CHCl3); IR (film)
2951, 1639, 1464, 1379, 1209, 1105, 1039, 984, 913, 865,
816, 747 cm~'; "H NMR (500 MHz, CDCls) 6 1.26 (3H, s,
Me63), 1.28 (3H, s, Me60), 1.31 (3H, s, Me61), 1.40 (3H, s,
Me), 1.51 (3H, s, Me), 1.65-1.70 (4H, m, H47, 50, 55 x 2),
1.72-1.79 (3H, m, H51 x 2, 54), 1.86-1.93 (2H, m, H50,
54), 2.06 (1H, dd, J=12.0, 5.0 Hz, H47), 2.41 (1H, ddd,
J=15.5, 6.5, 4.0 Hz, H43), 2.45 (1H, ddd, J=15.5, 9.0,
7.0 Hz, H43), 3.33 (3H, s, MOM), 3.49 (1H, dd, J=9.0,
4.0 Hz, H44), 3.66 (1H, dd, J=11.0, 5.0 Hz, H49), 3.69
(1H, d, J= 8.5 Hz, H57), 3.88 (1H, dd, J=12.0, 5.0 Hz,
H46), 3.88 (1H, d, J=9.0Hz, HS52), 393 (1H, d,
J=28.5Hz, H57), 4.58 (1H, d, J=7.0 Hz, MOM), 4.62
(1H, d, J=7.0Hz, MOM), 4.76 (1H, d, J=12.0 Hz,
NAP), 4.86 (IH, d, J=12.0 Hz, NAP), 5.01 (1H, dd,
J=10.0, 2.0 Hz, H41), 5.11 (1H, dd, J=17.0, 2.0 Hz,
H41), 5.93 (1H, dddd, J=17.0, 10.0, 7.0, 6.5 Hz, H42),
7.43-7.49 (3H, m, NAP), 7.77-7.82 (4H, m, NAP); *C
NMR (50 MHz, CDCly) § 14.0, 18.8, 20.4, 24.7, 25.2, 26.9,
27.4,30.5,35.2,37.2,42.8, 56.0, 72.9, 73.0, 73.8, 74.4, 74.7,
76.2, 77.9, 79.8, 84.6, 95.8, 103.2, 111.2, 116.2, 125.8,
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137.4; HRMS (ESI), Anal. Caled for CssHsoNaOg
(M+Na)" 633.3403, found 633.3401.
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